

Mark Scheme (Results)

January 2016

Pearson Edexcel International Advanced Level in Chemistry (WCH04) Paper 01 – General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043131*
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- \bullet write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

O 11		l	
Question	Correct Answer	Reject	Mark
Number			
1	D		1
Question	Correct Answer	Reject	Mark
Number			
2	D		1
Question	Correct Answer	Reject	Mark
Number			
3	A		1
<u> </u>	<u> </u>		
0	Commont American	Daiast	N4 l -
Question	Correct Answer	Reject	Mark
Number			
4	С		1
Question	Correct Answer	Reject	Mark
Number			
5a	C		1
Question	Correct Answer	Reject	Mark
Number		.,	
5b	В		1
Question	Correct Answer	Reject	Mark
Number	Correct Answer	Reject	Mark
5c	С		1
30	<u> </u>		Т
0	C	Detect	Manda
Question	Correct Answer	Reject	Mark
Number			
6	A		1
		_	
Question	Correct Answer	Reject	Mark
Number			
7	D		1
Question	Correct Answer	Reject	Mark
Number			
8	В		1
	1		. –
Question	Correct Answer	Reject	Mark
Number	COTTOCC ATISWEI	i cject	Hark
9a	A		1
Ja	Ι Δ		Ι -
Ougstiens	Cownest Anguar	Deiest	Manda
Question	Correct Answer	Reject	Mark
Number	8		
9b	В		1

Question Number	Correct Answer	Reject	Mark
10	В		1
Question Number	Correct Answer	Reject	Mark
11	В		1
Question Number	Correct Answer	Reject	Mark
12	D		1
Question Number	Correct Answer	Reject	Mark
13a	С		1
Question Number	Correct Answer	Reject	Mark
13b	С		1
Question Number	Correct Answer	Reject	Mark
13c	D		1
Question Number	Correct Answer	Reject	Mark
14	D		1
		<u>.</u>	
Question Number	Correct Answer	Reject	Mark
15	Α		1

TOTAL FOR SECTION A = 20 Marks

Section B

Question Number	Acceptable Answers		Reject	Mark
16a	TWO of		Dilatometry Sampling methods	2
	Bromine / Br ₂ by colorimetry (1)	Br / Br ⁻ Calorimetry	
	Carbon dioxide / CO ₂ by (measurement of) gas volume mass change	i / 1)	Just 'gas syringe' 'measure amount of gas' 'use balance'	
	ALLOW Hydrogen ions / H ⁺ and / or bromic ions / Br ⁻ By electrical conductivity (de 1)	Br ₂ or bromine	
	ALLOW Hydrogen ions / H ⁺ by pH measurement ((1)	НСООН	

Question Number	Acceptable Answers		Reject	Mark
16b(i)			Non uniform scale scores 0	2
	Suitable scale so the points cover more than half of grid in both directions and axes labelled	-		
	Horizontal axis labelled time /s ALLOW (s)			
	Vertical axis labelled [Br ₂] / mol dm ⁻³ ALLOW mol / dm ³ [Br ₂] x 10 ⁻³ /mol dm ⁻³	(1)	Br ₂ for [Br ₂]	
	Correct plotting of all points with smooth curve through all points ALLOW Minor wobbles	• •	Straight lines between points	

Question Number	Acceptable Answers	Reject	Mark
16b(ii)	Any two half lives shown on graph IGNORE Third half life even if not 195 ± 15 s (1) Each half life 195 ± 15 s must approximately match values from graph This may be shown on the graph (1) Third mark is stand alone: Half life is (approximately) constant (so first order) (1) ALLOW Lines showing tangents at two different concentrations (1) Values of gradients of both tangents (1) Gradient (rate) is directly proportional to concentration (1)	200 and 400	3

Question Number	Acceptable Answers	Reject	Mark
16b(iii)	Concentration of methanoic acid does not change (significantly) during course of reaction (as it is so much greater than concentration of bromine)	Methanoic acid is not involved in the rds Just 'it is in excess'	1

Question Number	Acceptable Answers	Reject	Mark
16b(iv)	Rate/ r/ R = $k[Br_2]^{(1)}[HCOOH]^{(1)}$	Omission of Rate/ r/ R	1
	Formulae must be correct	Br / CHOOH /HCOH	
	ALLOW Upper case K for k	Lack of square brackets	

Question Number	Acceptable Answers	Reject	Mark
16b(v)	$k = \frac{4.54 \times 10^{-5}}{0.01 \times 0.5}$		2
	$= 9.08 \times 10^{-3} / 0.00908 $ (1)		
	Mark units independently but must match rate equation in 16(b)(iv)		
	$dm^3 mol^{-1} s^{-1}$ (in any order) (1)		
	TE on rate equation IGNORE SF NOTE If first order then units are s ⁻¹		

(Total for Question 16 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
17a	Heptan-2-one ALLOW Hept-2-one Hepta-2-one Heptane-2-one 2-heptanone	Heptanone	1

Question Number	Acceptable Answers	Reject	Mark
17b	(Warm with) iodine and sodium hydroxide/ iodine in the presence of alkali (1)	Just 'iodoform test'	2
	EITHER Yellow and precipitate with A only		
	OR Yellow and precipitate with A , no change with B	Measure the melting point of the hydrazone	
	ALLOW Antiseptic smell with A only		
	ALLOW Correct result following use of just 'iodoform test' for second mark (1)		

Question Number	Acceptable Answers	Reject	Mark
17c	Test 2 may be given before test 1 Allow a correct result with a nearly correct test eg no acid in dichromate test scores 0 for test but scores 1 for the result remains orange		4
	Test 1: (Warm with) Brady's reagent / (2,4-)dinitrophenylhydrazine / (2,4)DNP(H) (1)		
	Yellow/ orange/ red and precipitate/ solid/ crystals and confirms C=O/ carbonyl/ aldehyde or ketone (1)		
	Test 2: Any one from (Warm/boil with) Fehling's solution/ Benedict's solution (1)		
	No red-brown/ brown/ orange ppt / stays blue, confirms not an aldehyde ALLOW No reaction confirms not an aldehyde/ so it is a ketone (1)		
	OR Test 2: (Warm with) Tollens' reagent/ ammoniacal silver nitrate (1)		
	No silver mirror/ grey black or silver ppt confirms not an aldehyde ALLOW No reaction confirms not an aldehyde/ so it is a ketone (1)		
	OR (Warm with) potassium/sodium dichromate((VI)) and sulfuric acid/ $Cr_2O_7^{2-}$ and H ⁺ ALLOW (Warm with) acidified (potassium/ sodium) dichromate((VI)) (1)		
	remains orange / does not go green confirms not an aldehyde ALLOW No reaction confirms not an aldehyde/ so it is a ketone (1)		

Additional Comments READ (b) and (c) TOGETHER DNPH test in (b) scores 0 but if DNPH test is given correctly in (b) allow up to 2 marks for	
this test in in (c)	

Question Number	Acceptable Answers		Reject	Mark
17d	OR CH ₃ CH(OH)(CH ₂) ₄ CH ₃ / CH ₃ CH(OH)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ Lithium tetrahydridoaluminate((III)	(1)	Skeletal formula Lack of hydrogens	2
	lithium aluminium hydride / LiAlH ₄ (in dry ether) ALLOW NaBH ₄ / sodium borohydride	(1)		

Question Number	Acceptable Answers	Reject	Mark
17e(i)	$N = \overline{c(i)} \longrightarrow N = \overline{c(i)} \longrightarrow $	CN without negative charge	3
	ALLOW		
	CH3 N=C(:) CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH		
	CH3 N=c-c-o-(:) H-C=N -> 1 CH2 CH2 CH2 CH2 CH2 CH2 CH2 CH		
	Arrow from any part of CN ⁻ (including a lone pair on either the carbon or nitrogen) to carbon of C=O and Arrow from part of C=O double bond to oxygen ALLOW CN ⁻ can approach from LHS or RHS of A Two steps via charged canonical form (1)		
	Negatively charged intermediate with C-CN bond (1) Arrow from resulting O^- to hydrogen of HCN/ H^+ / H_2O Do not penalise incorrect or absent arrow between H	C-N-C Penalise once only	
	and CN (1) IGNORE Dipoles on C=0		

Question Number	Acceptable Answers		Reject	Mark
Number 17e(ii)	Forms a racemic mixture / racemate Cyanide can attack (equally) fro either side/ above or below Because bonds round C=O are (trigonal) planar / \ C=O is planar / OR Carbonyl group / C=O group / reaction site is planar OR	(1)	Ketone/ the molecule is planar C=O is planar carbocation / intermediate is planar	3
	Bonds around carbonyl carbon a planar	re (1)		

(Total for Question 17 = 15 marks)

Question Number	Acceptable Answers	Reject	Mark
18a	$K_p = p(CH_3OH)$ $p(CO)(x) p(H_2)^2$ ALLOW Lower or upper case p/ pp Expression without brackets p^2H_2 P_{CO} etc	Square brackets Expressions without p/ pp/ P/PP to show partial pressure	1

Question Number	Accepta	ble Ansı	wers				Reject	Mark
18b		СО	H ₂	CH₃OH	total			1
	Mol at start	39.5	77.5	0	X			
	Mol at eqm	1.0	0.5	38.5	40(.0)			
	Mol H ₂ Mol CO ALLOW				(1)			
	Total mo	ol showi	n in wor	king belo	w (1)			
	ALLOW TE on m	ols of h	ydrogei	า				
		СО	h	H_2	CH₃OH			
	Mole fraction	0.02 n	25 (0.0125	0.9625			
	рр	1.25	5 (0.625	48.125			
	$K_p = ((4) = 98.56 = 98.6 = $	atm ⁻²)	(1.25)	x (0.625) ²			
	All three	e partia	l pressu	ıres	(1)			
	Correct TE on part K_p in ta	artial pr			ression for			
	Units TE on ex	xpressio	n in tab	ole	(1)			
	Correct 3 marks		with no	working	scores las	t		

If candidate incorrectly use the ratio 1 CO to 1 H₂ then first mark is lost but the remaining four can be achieved as shown below

	СО	H ₂	CH₃OH	total
Mol	39.5	77.5	0	
at				
start				
Mol	1.0	39(.0)	38.5	78.5
at				
eqm				

Mol H₂ (0)Mol CO and total mol **(1)**

ALLOW

TE on mols of hydrogen

	CO	H ₂	CH₃OH
Mole	0.0127	0.497	0.490
fraction			
рр	0.637	24.8	24.5

 $K_p = ((24.5)/(0.637) \times (24.8)^2$ = 0.06259 atm⁻²

- $= 0.0626 \text{ atm}^{-2}$

If candidate does not approximate to 3 SF during the calculation allow 0.0623 to 0.0625

All three partial pressures **(1)**

Correct value for K_p to 3 SF TE on partial pressures and expression for $K_{\rm p}$ in 18(a) **(1)**

Units

TE on expression in 18(a) (1)

Correct answer with no working scores last 3 marks

Question Number	Accept able Answers	Reject	Mark
18c	$(K_{\rm p} \ {\rm is \ smaller \ so \ reaction \ does \ not \ go}$ as far to right) reaction is exothermic/ ΔH is negative (1) $\Delta S_{\rm surroundings} = -\Delta H/T$ so is positive ALLOW If in explaining $\Delta S_{\rm surroundings}$ is +ve, the expression $\Delta S_{\rm surroundings} = -\Delta H/T$ is quoted, then the mark can be awarded (1) IGNORE References to $\Delta S_{\rm total} = {\rm RInK}$	Absence of $\Delta S_{\text{surroundings}} = - \Delta H/T$	2

Question Number	Acceptable Answers		Reject	Mark
18d				2
	CH ₂ OH			
	CHOH 			
	CH₂OH	(1)		
	+ 3 C ₁₅ H ₃₁ COOCH ₃ /CH ₃ OOC C ₁	₅ H ₃₁ /		
	CH ₃ OCOC ₁₅ H ₃₁	(1)		
	ALLOW partially displayed or skeletal formulae			

(Total for Question 18 = 10 marks)

Question Number	Acceptable Answers	Reject	Mark
19a	Proton/ H ⁺ donor		1

Question Number	Acceptable Answers	Reject	Mark
19b	pH of HCl = 1 and pH of weak acid is greater /higher than 1 Allow any number >1 and <7	Different (from 1)	1

Question Number	Acceptable Answers	Reject	Mark
19c(i)	HCOOH/ methanoic acid is stronger because its K_a is bigger/higher OR its p K_a is smaller / lower		1
	(The data: $ K_a p K_a $ Methanoic acid $1.6 \times 10^{-4} 3.8 $ Propanoic acid $1.3 \times 10^{-5} 4.9 $) IGNORE Discussion of inductive effect		

Question Number	Acceptable Answers	Reject	Mark
19c(ii)	$(HCOOH + C_2H_5COOH) \rightleftharpoons HCOO^- + C_2H_5COOH_2^+$	COOH [−] C ₂ H ₆ COOH ⁺	1
	ALLOW TE for equation with propanoic acid as proton donor giving HCOOH ₂ ⁺ and C ₂ H ₅ COO ⁻ if HCOOH is stated to be weaker		

Question Number	Acceptable Answers		Reject	Mark
19d	$[H^{+}] = (1 \times 10^{-14} / [OH^{-}])$ = 2 x 10 ⁻¹³ (mol dm ⁻³)	(1)		2
	pH = 12.7	(1)	13	
	OR			
	pOH / -log 0.05 = 1.3	(1)		
	pH = (14 -1.3 =) 12.7	(1)	13	
	Correct answer with no working score provided at least 3 SF Allow TE on first mark provided answer			

Question Number	Acceptable Answers	Reject	Mark
19e(i)	$C_2H_5COOH + NaOH \rightarrow C_2H_5COO^{(-)}Na^{(+)} + H_2O$		1
	ALLOW \rightleftharpoons for \rightarrow $C_2H_5COO^- + Na^+$ for $C_2H_5COO^{(-)}Na^{(+)}$		
	IGNORE State symbols even if incorrect		

Question	Acceptable Answers	Reject	Mark
Number 19e(ii)	Allow salt/ C ₂ H ₅ COONa/ propanoate ion/ C ₂ H ₅ COO ⁻ / base for A ⁻		5
	Allow propanoic acid/ C ₂ H ₅ COOH for HA		
	First mark		
	$K_{a} = \underbrace{[H^{+}][A^{-}]}_{[AAA]}$		
	[HA] OR		
	$\log K_{a} = \log[H^{+}] + \log [A^{-}]/[HA]$		
	OR pH = p K_a - log [HA]/[A ⁻]		
	ALLOW any of these equations re-arranged or used correctly (1)		
	Next four marks		
	Mol NaOH before mixing = $(20 \times 0.05/1000) = 0.001$ and mol propanoic acid before mixing = $(20 \times 0.25/1000) = 0.005$ (1)		
	Mol propanoate in mixture = 0.001 OR [propanoate] = $(0.001/40 \times 1000)$ = 0.025 (mol dm ⁻³) (1)		
	Mol propanoic acid in mixture = 0.004 OR [propanoic acid] = $(0.004/40 \times 1000)$ = $0.1 \text{(mol dm}^{-3}\text{)}$ (1)		
	$[H^+] = (1.3 \times 10^{-5})(0.1)$		
	0.025		
	pH = 4.28/ 4.3 (1)		
	Correct pH with no working scores last 4 marks		
	ALLOW		
	Other methods leading to 4.28 e.g. based on equal volumes being mixed so mol propanoate are in double the volume and so concentration is 0.025 mol dm ⁻³		

Question Number	Acceptable Answers	Reject	Mark
19e(iii)	First mark The mixture contains a large amount/ reservoir of a (weak) acid/propanoic acid and its conjugate base/ propanoate ions /salt (1)		3
	Second mark Only awarded if at least one equation given		
	Added OH^- combines with H^+ $(H^+ + OH^- \rightarrow H_2O)$ from propanoic acid followed by dissociation of more propanoic acid		
	$C_2H_5COOH \Rightarrow C_2H_5COO^- + H^+$		
	OR Added OH ⁻ combines with propanoic acid OH ⁻ + $C_2H_5COOH \rightarrow C_2H_5COO^-$ + H_2O (1)		
	Third mark (pH is unchanged because added OH ^{$-$} is removed) change in concentration of $C_2H_5COO^-$ and C_2H_5COOH is small $/$ ratio [salt]/[acid] hardly changes (1)		

(Total for Question 19 = 15 marks)

Section C

Question Number	Acceptable Answers	Reject	Mark
20a(i)	$\Delta S_{\text{system}} = 240.0 - 102.5 - 210.7$ = -73.2 J mol ⁻¹ K ⁻¹ / -0.0732 kJ mol ⁻¹ K ⁻¹		2
	ALLOW -73 J mol ⁻¹ K ⁻¹		
	Correct data (1)		
	Final answer with sign and units (in any order) TE on incorrect data (1)		

Question Number	Acceptable Answers		Reject	Mark
20a(ii)	First check final answer $+118.1 \text{ J mol}^{-1} \text{ K}^{-1} \ / \ +0.1181 \text{ kJ mol}^{-1} \text{ K}^{-1}$ ALLOW $+120 \text{ J mol}^{-1} \text{ K}^{-1}$	(2)		2
	OR $\Delta S_{\text{surroundings}} = -(-57 \times 1000 / 298)$ = (+)191.3 (J mol ⁻¹ K ⁻¹)	(-)		
	ALLOW (+)191 (J mol ⁻¹ K ⁻¹)	(1)		
	$\Delta S_{\text{total}} = (-73.2 + 191.3) = +118.1$ $\text{mol}^{-1}\text{K}^{-1}$ Use of -73 +191 gives +118	(1)		

Question Number	Acceptable Answers		Reject	Mark
20a(iii)	(it ceases when) $\Delta S_{\text{total}} = 0$	(1)		2
	(this is when $T\Delta S_{\text{system}} = \Delta H$)			
	$T = \underline{\Delta H}_{\Delta S_{\text{system}}} = \underline{57 \times 1000}_{73.2}$			
	= 778.69/ 778.7 / 779 / 780 (K)		778	
	Use of 73 gives 780.1/ 780 (K)	(1)	-780.1 -780	

Question Number	Acceptable Answers	Reject	Mark
20b	(Even though thermodynamically feasible) (The reaction is very slow because) the activation energy is high/ there is an activation energy barrier	Reaction is not spontaneous Makes reaction faster Catalyst lowers activation energy Provides an alternative route with a lower activation energy	1

(Total for Question 20 = 7 marks)

Question Number	Acceptable Answers	Reject	Mark
21a	Q: C=O (1750-1735 ester saturated) and R: C=O (1250-1230 ethanoate) (1)	C=O aldehyde	2
	Functional group: ester/ ethanoate (1)	Just O I C=O	

Question Number	Acceptable Answers		Reject	Mark
21b(i)	(\mathbf{Y} reacts with sodium carbonat give CO_2) so is a (carboxylic) as			3
	$M_r = 60$ from mass spectrum IGNORE Fragmentation CH ₃ COOH /ethanoic acid	(1)(1)	CH₃COOH ⁺	

Question Number	Acceptable Answers	Reject	Mark
21b(ii)	(Reacts with sodium to give H ₂) so is an alcohol and cannot be oxidized so a tertiary alcohol ALLOW No colour change with (acidified) dichromate to justify tertiary alcohol (1)		3
	(CH ₃) ₃ COH ALLOW Displayed or skeletal formula 2-methylpropan-2-ol Structural, displayed or skeletal formula shown in equation (1)		
	$ \begin{array}{l} (CH_3)_3COH + Na \rightarrow (CH_3)_3CO^{(-)}Na^{(+)} \\ + \ 1\!\!/_2 \ H_2 \\ ALLOW \\ C_4H_9OH + Na \rightarrow C_4H_9O^{(-)}Na^{(+)} + \ 1\!\!/_2 \\ H_2 \\ Multiples \\ TE \ if \ primary \ or \ secondary \ alcohol \\ given \ for \ structure $		

Question Number	Acceptable Answers	Reject	Mark
21b(iii)	Displayed formula of (CH ₃ COOC(CH ₃) ₃)		1
	Alkyl groups not fully displayed TE on primary or secondary alcohol in b(ii)		

Question Number	Acceptable Answers	Reject	Mark
21b(iv)	No marks for this part can be awarded unless a structure is shown in either (iii) or (iv)		3
	Two peaks because there are 2 different hydrogen environments (1)		
	Relative area 3:1/ 9:3/ 1:3 /3:9 (because there are 9H in one, 3H in the other) (1)		
	Both singlets because there are no H atoms on adjacent C / by application of n + 1 rule (1) ALLOW TE for ester formed from ethanoic aid and butan-1-ol / butan-2-ol ONLY		
	For butan-1-ol 5 peaks (1) 3:2:2:2:3 (1) Singlet, triplet, pentet/quintet, sextet, triplet by application of n + 1 rule		
	(1) For butan-2-ol 5 peaks (1) 3:3:1:2:3 (1)		
	Singlet, doublet, sextet, pentet/quintet, triplet by application of n + 1 rule (1)		

(Total for Question 21 = 12 marks)
TOTAL FOR PAPER = 90 MARKS